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in Eq. (7) of Ref. 4:
A/adpe<(1/X+1/A)T . (9)

Since A =472 (T2/0}2)«< 1, the bound (9) is much
smaller than (8). When viewed as a function of X
the right-hand side of (9) increases monotonically
with increasing X, the maximum (asymptotic)
value being A(<< 1), whereas (8) peaks at X~ 1 with
a peak value 21. The expressions (8) and (9) are
approximately equal only for X > 1/A and X<<A.

The reason for the difference between the re-
sults (8) and (9) lies solely in the choice of trial
function. The result (9) was obtained* with a trial
function, which was a variable linear combination
of the solution of the impurity-only problem with
the solution of the phonon-only problem. The trial
function of RB (2. 15), however, contains no varia-
tional parameter; it is an indication of how unfor-
tunate this ansatz is, that the simplest conceivable
trial function, namely, an energy-independent con-
stant [say 7(e)= 72, ] would do far better than the
ansatz of RB (2. 15). Such a constant trial function
gives immediately

A/ajpo<A (10)

which eliminates the peak exhibited by (8) when
plotted as a function of X.

The connection with our discussion prior to Eq.
(6) may now be made. The bound (9) is simply a
combination in parallel of the resistivities A; and
A, as defined by (3’) and (5), since A;=a3pJ, and
Ay,=aiApy. Then (9) assumes the form

A<(1/8,+1/8,) . (11)
Clearly (11) is in accordance with the requirement
that A should be less than or equal to the smaller
of A, and A,. It is also apparent that the relative
magnitude of p, and p; is of no immediate relevance.

With the obvious identifications the result (8) due
to RB is similarly written as

a=0.[p3/(py+p2)* 1+ az[0%/(o1+02)°], (12)

which has the form of a series combination of the
resistivities A, and A, after multiplication with
weight factors involving the ratio p, /p,. From
(12) one may recover the form (11) only by the re-
placement p; -~ A; and py,— A, in the weight factors.
Once again, this demonstrates the relevance of the
ratio A, /A, rather than p/p,.

The plots shown in RB’s Fig. 1 were obtained by
neglecting the second term in (8) compared to the
first one, that is, by writing
- q® X 2 pd
A=apo X =4 @ pS. 7o (13)

This approximation corresponds to setting A=0 in
(9), which results in A=0. Therefore (13) should
be interpreted as nothing more than an upper bound
on the number zero.

We conclude that Refs. 1-3 seriously overesti-
mate the deviations from additivity of the electron-
phonon and electron-impurity scattering, and that
the predicted peaks in A(T) (RB’s Fig. 1) do not
reflect any property of the model considered, but
only the inadequacy of the chosen trial function.

*See Ref. 1.
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SWhen the steps leading from RB’s (3.2) to (3.7) are
reproduced, it appears that the factors of (1+p%/p,)

occurring explicitly in RB’s (3.7) and (3. 8) should not be
there.
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Existence of a Gap in the Electronic Density of States of a Disordered System™
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A recent calculation by Weaire is shown to be a special case of an older and more general

theory.

In a recent letter, ! Weaire investigated the ener-
gy density of states of a particular model of an
amorphous group-IV semiconductor. The Hamil-

tonian used was based on the tight-binding approxi-
mation to the true Hamiltonian of an electron in a
disordered tetrahedrally coordinated network of
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atomic potentials. It is the purpose of this note to
point out that Weaire’s calculation is merely a par-
ticular example of a more general result? proved
some years ago.

In Ref. 2., an electron was considered to be mov-
ing in a disordered array of identical nonoverlapping
potential wells and to obey the Schrodinger equation

(- V2+V-€)y=0, @)

where y is a real wave function. The system was
then divided into cells, a cell being defined as the
region closer to one particular potential well than
to any other. Since ¥ is continuous at each inter-
face between cells, it follows that with periodic
boundary conditions over some large volume we
have

Y [ v@?-dS=0, @)

cells
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where dS is an element of surface area of a cell.

It was shown that a gap must exist in the density of
states if no cell could be found such that the inte-
gral over the cell surface was not positive. If one
replaces the Schrédinger Hamiltonian of Eq. (1) by
the “lattice gas” Hamiltonian of Ref. 1, then Eq.
(2) reduces, in Weaire’s notation, to

(v,® ‘“i2)=0,

=™
-

cells

from which that author derived his inequality (9).

It is worth noting that the more general theory is
capable of predicting the existence of several dif-
ferent band gaps for suitable potentials, and that it
is not necessary that the environment of any atom
possess symmetry of any kind.
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The measurements of the lattice thermal conductivity of n-Ge from 0.3 to 4.2 °K by Bird and
Pearlman are explained satisfactorily by the nonlinear theory of heat transfer in solids given

by Kazakov and Nagaev.

1. INTRODUCTION

The lattice thermal conductivity of nonmetals of
finite dimensions at low temperatures has drawn
considerable attention recently. At low tempera-
tures, the dominant scattering mechanisms are
boundary scattering and impurity scattering. The
anharmonic interactions (i.e., phonon-phonon in-
teractions) may be neglected at fairly low temper-
atures. The first attempt to rigorously calculate
the phonon conductivity of a finite lattice with de-
fects was undertaken by Erdos.! Later, Kazakov
and Nagaev (KN)Z calculated nonlinear heat trans-
fer in a lattice containing impurities using boundary
conditions consistent with the experimental situa-
tion. It is normally assumed that the system de-
parts slightly from thermodynamical equilibrium
which leads to the introduction of local tempera-
ture and the linearization of the kinetic equations
with respect to the temperature gradient. The
KN calculations of the thermal conductivity [see

Egs. (5) and (6)] clearly show that one can calcu-
late the effect of impurity scattering on the lattice
thermal conductivity more rigorously than was done
with Callaway’s phenomenological approach.?® Cal-
laway’s approach is complicated due to the fact
that at one temperature there are simultaneously
different scattering processes. Recent calcula-
tions*~® of the thermal conductivity of n-Ge show
that the phonon-phonon interaction simply modifies
the conductivity integral and itself gives negligible
contribution for temperatures below 5°K. These
calculations suggest the use of KN’s results to ex-
plain the thermal-conductivity measurements of
n-Ge between 0.5 and 4. 2 °K made by Bird and
Pearlman (BP).

KN have considered only the isotopic scattering
of the Rayleigh type for impurity scattering pro-
cesses. However, in certain systems it is ob-
served that resonance phenomenon occurs in the
impurity scattering processes. To consider the
effect of resonant scattering of phonons at reso-



